Tekhnologii mediabezopasnosti: metody protivodeistviia feik-kontentu v tsifrovykh media

Book Chapter
DOI: 10.31483/r-113839
Open Access
Monograph «Development of the Russian socio-economic system: challenges and prospects»
Creative commons logo
Published in:
Monograph «Development of the Russian socio-economic system: challenges and prospects»
Author:
Natalia G. Mironova 1
Work direction:
Глава 14
Pages:
171-195
Received: 17 October 2024

Rating:
Article accesses:
317
Published in:
РИНЦ
1 Institute of History and Public Administration of FSBEI of HE “Bashkir State University”
For citation:

Abstract

Digital technologies make it possible to automate the processes of disinformation and information warfare, launch fakes promptly and on a large scale, organize information interventions to shift public attention from one information agenda to another, to conduct information and psychological operations, and to have a certain impact on the consciousness and behavior of target groups. Fakes circulate not only in pop media and propaganda channels, but also penetrate into journalism, educational content, and scientific discourse, not only as a subject of scientific research, but also as a result of falsification; the phenomenon of fake journalism and journalism that ignores the high standards and principles of the profession has emerged. In the dense flow of rapidly updating information, attentive perception is difficult, it is difficult to distinguish between truth and falsification, and to obtain reliable information about events; Society is under unprecedented pressure from digital media disinformation, undermining trust in social institutions and social communication channels. These circumstances actualize the issues of improving the methodology and tools for verifying information and recognizing fake content in online media. The purpose of the study is to analyze the signs of fake media content and improve methods of countering disinformation in the media space. Results: the goals and motives of fake creators and distributors, signs and technologies of digital content falsification are investigated, approaches to combating fakes and falsification of information in online media are analyzed, the effectiveness of various technologies for detecting fake content and countering its influence is assessed. The concept of a comprehensive system for countering fakes in the digital space is outlined. One of the conclusions of the study is that countering the influence of fake online media content is not limited to technical and regulatory solutions, since the mechanisms of this influence are socio-psychological; cognitive sciences can provide a methodology for effectively countering deception and manipulation. The study is aimed at media security specialists.

References

  1. 1. CHugrov S.V. (2017). Post-truth: transformaciya politicheskoj real'nosti ili samorazrushenie liberal'noj demokratii? Polis. Politicheskie issledovaniya, (2), 42–59. https://doi.org/10.17976/jpps/2017.02.04. EDN YJEEWL
  2. 2. Ipsos: Survey on the impact of online disinformation and hate speech. Ipsos, 9 [Electronic resource]. – Access mode: https://www.unesco.org/sites/default/files/medias/fichiers/2023/11/unesco_ipsos_survey.pdf
  3. 3. Fitch A. (2019) Readers Beware: AI Has Learned to Create Fake News Stories [Electronic resource]. – Access mode: https://www.wsj.com/articles/readers-beware-ai-has-learned-to-create-fake-news-stories-11571018640].
  4. 4. Gowal S., Kohli P. (2023). Identifying AI-generated images with SynthID [Electronic resource]. – Access mode: https://deepmind.google/discover/blog/identifying-ai-generated-images-with-synthid
  5. 5. Habermas J. (2022). Ein neuer Strukturwandel der Öffentlichkeit und die deliberative Politik. Suhrkamp Verlag. Berlin.
  6. 6. Jung T., Kim S., Kim K. (2020). DeepVision: Deepfakes Detection Using Human Eye Blinking Pattern. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2988660
  7. 7. Kirchner J.H., Ahmad L., Aaronson S., Leike J. (2023). New AI classifier for indicating AI-written text [Electronic resource]. – Access mode: https://openai.com/index/new-ai-classifier-for-indicating-ai-written-text
  8. 8. Li C., Wang L., Ji S, Zhang X., Xi Z., Guo S., Wang T. (2022). Seeing is Living? Re-thinking the Security of Facial Liveness Verification in the Deepfake Era. arXiv:2202.10673v1. https://doi.org/10.48550/arXiv.2202.10673
  9. 9. Lukeš D., Laurent X., Pritchard J., Sharpe R., Walker C. (2023) Beyond ChatGPT: The state of generative AI in academic practice for autumn 2023. University of Oxford, 3–7 [Electronic resource]. – Access mode: https://www.ctl.ox.ac.uk/sites/default/files/ctl/documents/media/beyond_chatgpt_-_state_of_ai_for_autumn_2023_correct.pdf
  10. 10. Magesh V., Surani F., Dahl M., Suzgun M., Manning C.D., Ho D.E. (2024). Hallucina-tion-Free? Assessing the Reliability of Leading AI Legal Research Tools. https://doi.org/10.48550/arXiv.2405.20362
  11. 11. Marra F., Gragnaniello D., Verdoliva L. (2018). Detection of GAN-Generated Fake Im-ages over Social Networks. 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). https://doi.org/10.1109/MIPR.2018.00084
  12. 12. Newman N. (2024). Overview and key findings of the 2024 Digital News Report. Reuters Institute for the Study of Journalism [Electronic resource]. – Access mode: https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2024/dnr-executive-summary
  13. 13. Pluckrose H., Lindsay J.A., Boghossian P. (2018). Academic Grievance Studies and the Corruption of Scholarship [Electronic resource]. – Access mode: https://web.archive.org/web/20181013153454/https://areomagazine.com/2018/10/02/academic-grievance-studies-and-the-corruption-of-scholarship
  14. 14. Roozenbeek J., Linden S. (2019). Fake news game confers psychological resistance against online misinformation. Palgrave Communications, (5). https://doi.org/10.1057/s41599-0190279-9
  15. 15. Taylor R., Kardas M., Cucurull G., Scialom T., Hartshorn A., Saravia E, Poulton, A., Kerkez V., Stojnic R. (2022). Galactica: A Large Language Model for Science [Electronic resource]. – Access mode: https://arxiv.org/abs/2211.09085; https://doi.org/10.48550/arXiv.2211.09085
  16. 16. Vosoughi S., Roy D., Aral S. (2018). The Spread of True and False News Online. Science, (359), 1146–1151. https://doi.org/10.1126/science.aap9559
  17. 17. Weber-Wulff D., Anohina-Naumeca A., Bjelobaba S., Foltýnek T., Guerrero-Dib J., Po-poola O., Šigut P., Waddington L. (2023). Testing of Detection Tools for AI-Generated Text. International Journal for Educational Integrity, (19). https://doi.org/10.1007/s40979-023-00146-z. EDN VCYINN
  18. 18. Wei J., Tay Y., Bommasani R., Raffel C., Zoph B., Borgeaud S., Yogatama D., Bosma M., Zhou D., Metzler D., Chi E.H., Hashimoto T., Vinyals O., Liang P., Dean J., Fedus W. (2022). Emergent Abilities of Large Language Models. Published in Transactions on Machine Learning Research. https://doi.org/10.48550/arXiv.2206.07682
  19. 19. Фейк-ньюс – и как с ними бороться? // Сайт ВЦИОМ [Электронный ресурс]. – Режим доступа: https://wciom.ru/analytical-reviews/analiticheskii-obzor/feik-njus-i-kak-s-nimi-borotsja (дата обращения: 22.11.2023).
  20. 20. Грачев М.Н. Концепт «разрушения правды» в условиях цифрового общества (аналитический обзор) / М.Н. Грачев, Р.В. Евстифеев // Контуры глобальных трансформаций: политика, экономика, право. – 2020. – №13 (2). – С. 229–248. https://doi.org/10.23932/2542-0240-2020-13-2-12. – EDN CKTGBY
  21. 21. Ершов Ю.М. Феномен фейка в контексте коммуникационных практик / Ю.М. Ершов // Вестник Томского государственного университета. Филология. – 2018. – №52. – С. 245–256. https://doi.org/10.17223/19986645/52/15. – EDN XPICLR
  22. 22. Кириллова Н.Б. Цифровая культура как новая социально-антропологическая реальность и проблемы идентичности / Н.Б. Кириллова // Современная наука: актуальные проблемы теории и практики. Серия: Познание. – 2023. – №7. – С. 13–18. https://doi.org/10.37882/2500-3682.2023.07.04. – EDN MEOULJ
  23. 23. Тумбинская М.В. Идентификация фейк-новостей с помощью веб-ресурса на основе нейронных сетей / М.В. Тумбинская, Р.А. Галиев // Программные продукты и системы. – 2023. – №4. – С. 590–599. https://doi.org/10.15827/0236-235X.144.590-599. – EDN AEJSLD
  24. 24. Указ Президента РФ от 10.10.2019 г. №490 «О развитии искусственного интеллекта в Российской Федерации» // СПС Гарант [Электронный ресурс]. – Режим доступа: https://base.garant.ru/72838946 (дата обращения: 17.10.2024)
  25. 25. Ушкин С.Г. Не только социальные сети: каналы распространения фейковых новостей в представлениях населения / С.Г. Ушкин // Галактика медиа. Журнал медиа исследований. Исследовательский электронный журнал. – 2024. – №6 (2). – С. 162–176. https://doi.org/10.46539/gmd.v6i2
  26. 26. Чугров С.В. Post-truth: трансформация политической реальности или саморазрушение либеральной демократии? / С.В. Чугров // Полис. Политические исследования. – 2017. – №2. – С. 42–59. https://doi.org/10.17976/jpps/2017.02.04. – EDN YJEEWL

Comments(0)

When adding a comment stipulate:
  • the relevance of the published material;
  • general estimation (originality and relevance of the topic, completeness, depth, comprehensiveness of topic disclosure, consistency, coherence, evidence, structural ordering, nature and the accuracy of the examples, illustrative material, the credibility of the conclusions;
  • disadvantages, shortcomings;
  • questions and wishes to author.